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Densification model for powder compacts

DAVID C. C. LAM
Dept. of Mechanical Engineering, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong
E-mail: medcclam@ust.hk

The driving force of densification has traditionally been modeled on the basis of local
curvature changes between powder particle pairs. Extension of particle pair analysis to
powder compacts involving billions of particles has not been successful because of the
geometric difference between the two cases. In this paper, a densification stress model for
grain boundary and lattice diffusion controlled densification is developed on the basis of a
powder compact’s thermodynamics and the internal surface area evolution. For compacts
with a constant grain size, the model predicts that the densification stress increases as a
function of relative density, which is in agreement with experimental trends. With grain
growth, the densification stress becomes relatively constant throughout the intermediate
stage of densification, in agreement with experimental data in the literature. Comparison of
densification rate data with densification rate model employing the developed densification
stress relation also gives good functional agreement. These agreements indicate that
modelling densification stress and densification rate on the basis of internal surface area
captures the essential physics of powder compact densification. C© 1999 Kluwer Academic
Publishers

1. Introduction
Powder based parts are typically sintered at high tem-
perature to eliminate voids and to strengthen the parts.
The sintering process is driven by a decrease in the
overall potential energy via reduction of the solid-vapor
interfacial energy in balance with the growth of solid-
solid interfaces within the part (Fig. 1). The sintering
process can be loosely divided into three stages: the ini-
tial stage covers the growth of necks between touching
particles, the second or intermediate stage is character-
ized by a continuous interconnected network of both
pore and solid phases, and the final stage commences
when the pores are no longer continuous, but are broken
into isolated pores.

In the initial and intermediate stage, necks are formed
between touching particles owing to potential gradients
between the particle surfaces and the contact points. For
a pair of identically sized single crystalline spheres, the
neck between the two particles will grow until an energy
balance between the decreasing solid-vapor surface en-
ergy and increasing solid-solid grain boundary energy
is established. The growth of the neck during this period
can occur via surface, grain boundary and volume dif-
fusion or vapor transport via evaporation and conden-
sation (Fig. 2). In the initial stage at low temperature,
surface diffusion does not contribute to densification
(no movement between particle mass centers) but will
contribute strongly to neck formation because of its low
activation energy. At higher temperature, grain bound-
ary and volume diffusion will be activated to eliminate
void space between particles. Based on these diffusion
mechanisms, a number of sintering models describing

Figure 1 Schematic of the decrease in the overall potential energy via
reduction of the solid-vapor interfacial area (densification) or via reduc-
tion of particle/grain area via grain growth and coarsening.

the evolution of neck geometry between two particles
or an array of particles have been developed [1–4]. The
sintering driving force is principally modeled on the
basis of the local particle and neck curvature. Sintering
laws describing the evolution of neck geometry devel-
oped on this basis compare well with neck growth ex-
periments. However, extension of the pair model to the
densification of a powder compact has met with less
success [5]. The divergence between model and ex-
periments can be attributed to previously unaccounted
geometric changes in a compact. For example, local
particle rearrangements [6], new contact formation and
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Figure 2 Schematic of densification mechanisms (after Helle [12]).

differential sintering owing to local density variations
[7] have been found to affect the development of sin-
tering bodies.

In the intermediate stage, the microstructure resem-
bles a partially compacted assembly of copper spheres.
The deformed particles form an interconnected network
penetrated by an interconnected network of pores. By
modeling the intermediate stage microstructure as an
interconnected network of polyhedra and cylindrical
pores, Coble [8] has been able to model the sintering
driving force and develop densification rate equations
for lattice diffusion and grain boundary diffusion. How-
ever, the equations are applicable to a small density
range in which the grain size and pore geometry re-
main relatively constant. Chuet al. [9] modeled the
densification behavior of a cubic array of spheres for a
wide density range while using a constant densification
stress.

Recently, progress in hot isostatic pressing (HIPing)
of powder compacts has added a new prespective onto
pressureless sintering. In HIPing, the external pressure
is isostatically applied to the entire compact causing
the compact to densify via high temperature creep. The
behavior of the compact has been modeled based on
diffusion mechanisms [10, 11]. HIPing maps were gen-
erated and reasonable agreements were found between
the models and HIPing experiments [12].

Pressureless sintering can also be viewed as creep,
but with the compressive pressure provided by the
compact’s tendency to reduce total compact surface
energies. Constitutive laws for sintering have been
developed on the basis of the creep behavior of porous
compacts while still employing the driving force rela-
tion developed for the initial stage sintering of an array
of spheres and final stage sintering of a microstructure
containing isolated pores [13]. The intermediate stage
of sintering, where more than 50% of the densification
shrinkage occurs, is largely ignored. In the following
section, a sintering driving force relation formulated on
the basis of energy changes associated with surface area
fraction is developed. Then, the relation is incorporated
into diffusion equations to give a fully microstructural
based densification relation for powder compacts for
comparisons with experimental densification stress and
densification rate data in the literature.

2. Densification stress model
Sintering is driven by the tendency of the compact to
reduce the solid-vapor surface and grain boundary area.
Representing the solid-vapor surface energy per unit
area and the grain boundary energy per unit area asγs
andγgb, the potential energy of a unit single crystalline
particle in a powder compact is given as

E = γsAs+ γgb

2
Agb (1)

where As and Agb are respectively the surface-vapor
surface area and grain boundary area of the particle, and
the factor of two is introduced because grain boundary
area is shared by two particles. DefiningA as the solid-
vapor surface area fraction per unit particle

A = As

As+ Agb
, (2)

andVm as the mass volume, the particle surface area-
volume relation can be written as

As+ Agb

Vm
= α

G
(3)

where α is the shape factor for the particle (6 for
spheres) andG is the characteristic particle size. Com-
bining the three equations gives

E =
[
γsA+ γgb

2
(1− A)

]
α

G
Vm. (4)

γs andγgb are related to the equilibrium dihedral angle
8e through

γgb

γs
= 2 cos

(
8e

2

)
. (5)

Definingk as the cosine and substituting into Equation
4 gives

E = [k+ A(1− k)]
α

G
γsρVb (6)

after rearrangement. For equiaxed particles, shape fac-
tor α can be assumed to remain constant throughout
sintering. Withk andγs defined as material constants,
the differential change in potential energy as a function
of microstructural changes is simply

dE

dVb
= ∂E

∂G

∂G

∂Vb
+ ∂E
∂A

∂A

∂Vb
+ ∂E
∂ρ

∂ρ

∂Vb
+ ∂E

∂Vb
. (7)

But since

Vb = Vm

ρ
. (8)

andVm is constant for a compact, Equation 7 reduces
to

dE

dVb
= ∂E

∂G

∂G

∂Vb
+ ∂E
∂A

∂A

∂Vb
(9)
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The term on the left hand side is the overall driving pres-
sure for microstructural change during sintering while
the first term on the right hand side is the driving stress
for grain growth and the second term on the right hand
side is the driving stress for change in surface area frac-
tion. DefiningPd as the densification stress

Pd = ∂E

∂A

∂A

∂Vb
(10)

and substituting Equation 6 forA gives

Pd = −αγsρ
2(1− k)

G

∂A

∂ρ
, (11)

after simplification.G and A are functions of the mi-
crostructure, separately accounting for grain growth
and coarsening, and the effect of surface area changes
without grain growth onPd, respectively.

The evolution of surface areaAs in sintered metal
powder has been studied by Rhineset al. [14]. They
concluded that the surface areaAs for a compact in the
intermediate stage of sintering should be a linear func-
tion of relative density. Artz [15] studied the evolution
of Agb analytically and measured the grain boundary
area of powder compacts isostatically compacted to dif-
ferent densities. Both their data and analysis revealed
that grain boundary area varies linearly as a function of
relative density from the initial as-packed state to the
fully compacted state. Shaw and Brook [16] measured
the evolution of surface area and grain boundary area
during sintering for pure alumina compacts and alu-
mina compacts with MgO additive to control alumina’s
grain growth. Transforming their data into area fraction
A using Equation 2 reveals that surface area fraction is
a linear function of relative density (Fig. 3). The data
for alumina with and without MgO are collinear de-
spite their different grain growth behavior. Clearly,A
and G are separable functions and surface area frac-
tion A can be modeled as a function of relative density

Figure 3 Plot of surface area fraction for Al2O3 ( h) and Al2O3 doped
with grain growth controlling MgO (x). The plotted points are calculated
from surface area measurements from Shaw and Brook [16]. The surface
area fraction is collinear in spite of the different grain growth behavior.

independent of grain size with the equation

A = ξ 1− ρ
1− ρo

. (12)

At ρ = 1, the sintered body is fully dense and the sur-
face area fraction must be zero. When the body is in the
initial state withρ = ρo, A is equal toξ . If there is no
appreciable surface diffusion to the neck before densifi-
cation commences, the compact can be assumed to have
no appreciable neck area andξ is equal to one. For typ-
ical powder compacts,ξ can be approximately taken as
0.9± 0.1, to account for particle neck thickening ow-
ing to surface diffusion or evaporation-condensation.
Substituting Equation 12 into 11 and simplifying gives

Pd = αγs(1− k)
Aρ2

G(1− ρ)
(13)

where thePd is a function of material constants and
evolving microstructural parameters.

3. Densification rate
Under densification stress, mass is removed from grain
boundary regions to the pore surfaces, resulting in
densification. Powder compact densification rate un-
der a given densification stress has been developed
by Wilkinson [17], Artz [18] and Chuet al. [9]. Chu
et al. derived a pressureless densification rate relation
for cubically packed array of spheres while Arzt, build-
ing on Wilkinson’s work developed a densification rela-
tion from detailed consideration of the evolving particle
geometries in a random dense packed compact under
isostatic pressure (HIPing). Following Wilkinson and
Artz for a randomly packed compact, the rate of solid
volume removal from the boundary (neck) region per
unit particle under a given densification is

dVm,gb

dt
= 4πDÄZ Peff

kBT
(14)

whereD is the sum of the lattice diffusion coefficient
and the product of grain boundary diffusion coefficient
times grain boundary thickness,Ä is the atomic volume,
Z is the average particle coordination number andkB
is the Boltzman’s constant. The effective stress acting
at the grain boundaryPeff is related to the densification
stressPd [19] through

Peff = Pd

ρ(1− A)
(15)

where (1− A) is the grain boundary area fraction. The
displacement rate per sintered contact is simply the re-
moval rate (Equation 15) divided by the grain boundary
area. Normalizing displacement rate by the mean par-
ticle radius (G/2) gives

ε̇ = dε

dt
= 2

G

dVm,gb

Agb dt
(16)
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whereε̇ is the average true strain rate of the compact.
Since

ρ̇ = 3ρε̇, (17)

the densification rate is simply

ρ̇ = 24ρDÄZ Peff

G3kBT(1− A)
(18)

after substitution. TakingZ = 12ρ from Helle et al.
[12] and combining Equations 15 into 18 gives

ρ̇ = 288ρDÄPd

G3kBT(1− A)2
(19)

Typically, Pd is an empirical constant in the range of
1–10 MPa. With the new model for densification stress,
a new rate law can be written. Substituting forPd using
Equation 13 gives the new fully microstructural based
densification rate law as

ρ̇ = 5 ρ3A

G4(1− ρ)(1− A)2
(20a)

with

5 = 288DÄαγs(1− k)

kBT
, (20b)

where5 is the aggregate temperature dependent mate-
rial constant.

4. Comparisons and discussion
The functional dependence of the densification stress
on the microstructure is embodied in the material con-
stant5, surface area fractionA, relative densityρ, and
grain sizeG in the current model. Direct experimental
data on densification stress as a function of the evolv-
ing microstructure in terms ofG, ρ and A are sparse.
Rhineset al. [14] experimentally measured the uniax-
ial densification of a copper powder compact during
the initial stage of sintering where grain size remained
constant. The measured stress was found to increase
as a function of relative density. For densification with
no grain growth, the theoretical densification stressPd
(Equation 13) is a monotonically increasing function of
relative density (Fig. 4). Thus, the densification model
is in qualitative agreement with stress measurements on
the initial stage sintering of copper powders with con-
stant grain size. The increase is a natural consequence
of the increase in energy density as the body densifies
(ρ2 term in Equation 11). WhilePd is dependent on
surface area fraction, but it does not contribute to the
increase in the densification since the rate of change of
A with respect toρ (Equation 11) is constant. In real
compacts with growing grains, the rise in densification
stress is counter-balanced by the inverse dependence
on G.

The functional dependence of densification stress on
grain growth is not directly available, but can be ob-
tained indirectly from densification rate and creep rate

Figure 4 Normalized densification stress curves for compacts with ini-
tial relative densities of 0.5 (solid curve) and 0.6 (dashed curve), assum-
ing constant grain size.

data. Chuet al. [9] reported densification rate and con-
stant load creep rate during the intermediate stage of
sintering for CdO, ZnO, MgO, MgO with Bi2O3 and
YBa2Cu3O2 powder compacts for varying conditions
of temperature and initial and sintered densities. They
found that the ratio densification rate/creep rate gener-
ally exhibited a slight decrease when plotted as a func-
tion of relative density with the exception of MgO with
Bi2O3, which exhibited a small rise. Creep rate is de-
pendent on the applied creep load and creep viscosity of
the compact, while the densification rate is dependent
on the densification stress and densification viscosity.
Theoretical analysis of the ratio of creep viscosity to
densification viscosity suggested that the ratio is nearly
constant independent of sintered density [20]. On this
basis, Chuet al. [9] concluded from their densifica-
tion/creep rate data that the densification stress is also
relatively constant for a wide range of relative densities
and temperatures.

In the current model, a constant densification stress
would result if G, the grain growth term counter-
balances the rise due to theρ2 term. Consider CdO
compacts in which grain size [21] varies according to
the empirically fitted equation (Fig. 5a)

G = 15.68−44.1ρ+34.9ρ2 (0.7≤ ρ ≤ 0.9) (22)

for CdO compacts with initial relative densityρo =
0.58 (Fig. 5a). The predicted densification stressPd
with grain growth is plotted along with experimen-
tally measured densification stress for CdO compacts
(Fig. 5b). Good functional agreement is obtained be-
tween the data and the theoretical relation (Equa-
tion 11). The densification stress without grain growth
(G fixed at 1.84µm: extrapolated grain size atρo =
0.58 using Equation 22) is plotted for comparison
(Fig. 5c). Without grain growth, the stress is predicted to
increase from∼2 MPa to∼3 MPa. With grains grow-
ing from 2µm to ∼4µm (Fig. 5a), the densification
stress decreased from∼2 MPa to∼1.5 MPa. As was
observed by Chuet al. [9] for a wide variety of material
systems, the increase in grain size counter-balanced the
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Figure 5 (a) CdO grain size data plotted with 20% error and curve fit. (b)
Comparison of densification stress as predicted by the model (Pd, bold
solid curve) with CdO experimental data (M) derived from creep strain
and densification rate [21]. Error inPd was estimated from CdO grain size
measurement error which is reported to be 20% (G curve). The effective
stress at grain junction is also plotted for comparison (Peff). ρo= 0.58;
8= 130◦, andγs= 1 J/m2 are use for material constants. (c) Theoretical
prediction of densification stress (Pd) and effective densification stress
(Peff) for CdO with grain size held atG= 1.84µm,ρo= 0.58;8= 130◦,
andγs= 1 J/m2.

ρ2 term, resulting in approximately constant densifica-
tion stress for CdO powder compacts. Clearly, if grain
growth is inhibited by additives, as in the case for MgO
doped with Bi2O3, an increasing densification stress as

Figure 6 Direct comparison of densification rate (solid curve) predicted
by model with densification rate data (x) for CdO compacts [21] with
ρo= 0.58,8= 130◦, γs= 1 J/m2, and5= 1× 10−23 m/N. Error bars
for the data were calculated on the basis of the reported 20% error in
grain size measurement. The long dashed curve represents the model’s
prediction whenρo is increased to 0.68. The short dashed curve repre-
sents the model’s prediction when the grain sizeG is fixed and held at
1.84µm with ρo= 0.58.

a function of relative density, as reported by Chuet al.
[9] is not unexpected.

The new densification rate relation (Equation 20a) in-
corporating the new densification stress model can be
directly compared with CdO powder compact densifi-
cation rate data [21]. The predicted densification rate
along with the rate data is plotted in Fig. 6. The model
systematically overestimated the data at low density
and underestimated the densification rate at high den-
sity. The systematic error may have originated from
modeling errors in surface area fractionA, densifica-
tion stress formulation and experimental error. Since
densification stress has compared well with data, the
stress formulation and surface area fraction modelA
are unlikely error sources. Systematic experimental er-
ror in grain size measurement is the likely source as
the densification rate is strongly dependent on it via a
4th power dependence. Small measurement error inG
will not affect densification stress, but will dramatically
affect densification rate. Thus with a reported 20% er-
ror in grain size measurement (plotted error bars), the
agreement between the model and data is acceptable
within given error.

5. Microstructural dependence
The effect of microstructural parameters on the den-
sification rate are varied and explored in this section.
Densification rate is dependent on the material con-
stants, grain size and surface area fraction. Both grain
size and surface area fraction is in turn dependent on the
sintered relative densityρ and initial compact density
ρo. The effect of initial density on densification rate is
shown in Fig. 6. Increasing the initial compact relative
densityρo from 0.58 to 0.68 increases the densifica-
tion rate by 500% atρ= 0.7 (long dashed curve in
Fig. 6). Atρ= 0.9, the densification rate forρo= 0.68

5883



case decreased to approximately 150% of the rate for
ρo= 0.58 case. Hence increasing initial density gener-
ally enhances densification rate, but the enhancement
diminishes with progressive densification.

The theoretical densification rate with no grain
growth (G= 1.84µm) is plotted as a short dashed curve
(Fig. 6). Without grain growth, the densification rate is
relatively constant with densification rate atρ= 0.9 di-
minish by only 50% relative to the densification rate
atρ= 0.7 (short dashed curve). With grain growth, the
densification rate atρ= 0.90 is less than 10% of the
rate atρ= 0.7 (solid curve). Clearly, increasing initial
relative density can boost densification rate, perhaps
in the first half of densification, while grain growth
control can elevate the densification rate throughout
densification.

6. Conclusion
A new densification stress model has been developed in
place of traditional pairwise models. Observed exper-
imental trends were explained by the new model and
comparison with experimentally measured densifica-
tion stress in the literature gave good agreement. Den-
sification rate relation developed on the same basis gave
reasonable functional agreement between experimental
data and model. Agreements in both densification stress
and densification rate models suggest that for a given
material, the densification process is strongly affected
by initial relative density mainly in the first half of den-
sification while grain growth affects the densification
throughout.
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